Slepian models for Gaussian random landscapes
نویسندگان
چکیده
منابع مشابه
Gaussian random field models for spatial data
Spatial data contain information about both the attribute of interest as well as its location. Examples can be found in a large number of disciplines including ecology, geology, epidemiology, geography, image analysis, meteorology, forestry, and geosciences. The location may be a set of coordinates, such as the latitude and longitude associated with an observed pollutant level, or it may be a s...
متن کاملSmall Ball Probabilities for the Slepian Gaussian Fields
The d-dimensional Slepian Gaussian random field {S(t), t ∈ R+} is a mean zero Gaussian process with covariance function ES(s)S(t) = ∏d i=1 max(0, ai − |si − ti|) for ai > 0 and t = (t1, · · · , td) ∈ R+. Small ball probabilities for S(t) are obtained under the L2-norm on [0, 1]d, and under the sup-norm on [0, 1]2 which implies Talagrand’s result for the Brownian sheet. The method of proof for t...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2020
ISSN: 1029-8479
DOI: 10.1007/jhep05(2020)142